Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Theor Appl Genet ; 137(5): 112, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38662228

RESUMO

KEY MESSAGE: Two key genes Zm00001d021232 and Zm00001d048138 were identified by QTL mapping and GWAS. Additionally, they were verified to be significantly associated with maize husk number (HN) using gene-based association study. As a by-product of maize production, maize husk is an important industrial raw material. Husk layer number (HN) is an important trait that affects the yield of maize husk. However, the genetic mechanism underlying HN remains unclear. Herein, a total of 13 quantitative trait loci (QTL) controlling HN were identified in an IBM Syn 10 DH population across different locations. Among these, three QTL were individually repeatedly detected in at least two environments. Meanwhile, 26 unique single nucleotide polymorphisms (SNPs) were detected to be significantly (p < 2.15 × 10-6) associated with HN in an association pool. Of these SNPs, three were simultaneously detected across multiple environments or environments and best linear unbiased prediction (BLUP). We focused on these environment-stable and population-common genetic loci for excavating the candidate genes responsible for maize HN. Finally, 173 initial candidate genes were identified, of which 22 were involved in both multicellular organism development and single-multicellular organism process and thus confirmed as the candidate genes for HN. Gene-based association analyses revealed that the variants in four genes were significantly (p < 0.01/N) correlated with HN, of which Zm00001d021232 and Zm00001d048138 were highly expressed in husks and early developing ears among different maize tissues. Our study contributes to the understanding of genetic and molecular mechanisms of maize husk yield and industrial development in the future.


Assuntos
Mapeamento Cromossômico , Fenótipo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Zea mays , Zea mays/genética , Zea mays/crescimento & desenvolvimento , Mapeamento Cromossômico/métodos , Genes de Plantas , Estudo de Associação Genômica Ampla , Estudos de Associação Genética , Desequilíbrio de Ligação , Genótipo
2.
J Fungi (Basel) ; 9(12)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38132758

RESUMO

Gibberella ear rot (GER) caused by Fusarium graminearum (teleomorph Gibberella zeae) is one of the most destructive diseases in maize, which severely reduces yield and contaminates several potential mycotoxins in the grain. However, few efforts had been devoted to dissecting the genetic basis of maize GER resistance. In the present study, a genome-wide association study (GWAS) was conducted in a maize association panel consisting of 303 diverse inbred lines. The phenotypes of GER severity were evaluated using kernel bioassay across multiple time points in the laboratory. Then, three models, including the fixed and random model circulating probability unification model (FarmCPU), general linear model (GLM), and mixed linear model (MLM), were conducted simultaneously in GWAS to identify single-nucleotide polymorphisms (SNPs) significantly associated with GER resistance. A total of four individual significant association SNPs with the phenotypic variation explained (PVE) ranging from 3.51 to 6.42% were obtained. Interestingly, the peak SNP (PUT-163a-71443302-3341) with the greatest PVE value, was co-localized in all models. Subsequently, 12 putative genes were captured from the peak SNP, and several of these genes were directly or indirectly involved in disease resistance. Overall, these findings contribute to understanding the complex plant-pathogen interactions in maize GER resistance. The regions and genes identified herein provide a list of candidate targets for further investigation, in addition to the kernel bioassay that can be used for evaluating and selecting elite germplasm resources with GER resistance in maize.

3.
Insects ; 14(10)2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37887815

RESUMO

Genetic engineering technology offers opportunities to improve many important agronomic traits in crops, including insect-resistance. However, genetically modified (GM) exogenous proteins in edible tissues of transgenic crops has become an issue of intense public concern. To advance the application of GM techniques in maize, a Cre/loxP-based strategy was developed for manipulating the transgenes in green tissues while locking them in non-green tissues. In the strategy, the site-specific excision can be used to switch on or off the expression of transgenes at specific tissues. In this work, two basic transgenic maize, named KEY, carrying the Cre gene, and LOCK, containing the Vip3A gene with a blocked element, were obtained based on their separate fusion gene cassettes. The expression level and concentration of Vip3A were observed with a high specific accumulation in the green tissues (leaf and stem), and only a small amount was observed in the root and kernel tissues in the KEY × LOCK hybrids. The insect resistance of transgenic maize against two common lepidopteran pests, Ostrinia furnacalis and Spodoptera frugiperda, was assessed in the laboratory and field. The results indicate that the hybrids possessed high resistance levels against the two pests, with mortality rates above 73.6% and damage scales below 2.4 compared with the control group. Our results suggest that the Cre/loxP-mediated genetic engineering approach has a competitive advantage in GM maize. Overall, the findings from this study are significant for providing a feasible strategy for transgenes avoiding expression in edible parts and exploring novel techniques toward the biosafety of GM plants.

4.
World J Gastrointest Oncol ; 15(9): 1595-1604, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37746643

RESUMO

BACKGROUND: Hepatic arterioportal fistulas (APFs) are common in hepatocellular carcinoma (HCC). Moreover, correlated with poor prognosis, APFs often complicate anti-tumor treatments, including transarterial chemoembolization (TACE). AIM: To compare the efficacy of ethanol-soaked gelatin sponges (ESG) and microspheres in the management of APFs and their impact on the prognosis of HCC. METHODS: Data from patients diagnosed with HCC or hepatic APFs between June 2016 and December 2019 were retrospectively analyzed. Furthermore, APFs were embolized with ESG (group E) or microspheres (group M) during TACE. The primary outcomes were disease control rate (DCR) and objective response rate (ORR). The secondary outcomes included immediate and first follow-up APF improvement, overall survival (OS), and progression-free survival (PFS). RESULTS: Altogether, 91 participants were enrolled in the study, comprising 46 in group E and 45 in group M. The DCR was 93.5% and 91.1% in groups E and M, respectively (P = 0.714). The ORRs were 91.3% and 66.7% in groups E and M, respectively (P = 0.004). The APFs improved immediately after the procedure in 43 (93.5%) patients in group E and 40 (88.9%) patients in group M (P = 0.485). After 2 mo, APF improvement was achieved in 37 (80.4%) and 33 (73.3%) participants in groups E and M, respectively (P = 0.421). The OS was 26.2 ± 1.4 and 20.6 ± 1.1 mo in groups E and M, respectively (P = 0.004), whereas the PFS was 16.6 ± 1.0 and 13.8 ± 0.7 mo in groups E and M, respectively (P = 0.012). CONCLUSION: Compared with microspheres, ESG embolization demonstrated a higher ORR and longer OS and PFS in patients of HCC with hepatic APFs.

5.
J Econ Entomol ; 116(5): 1894-1901, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37676739

RESUMO

Genetically modified (GM) proteins in edible tissues of transgenic maize are of intense public concern. We provided a Cre/loxP-based strategy for manipulating the expression of transgenes in green tissues while locking them in nongreen tissues. First, the Cre gene was driven by the green tissue-specific promoter Zm1rbcS to generate transgenic maize KEY. Meanwhile, a gene cassette containing a Nos terminator (NosT) in front of the Cry1Ab/c gene was driven by the strong promoter ZmUbi to generate another transgenic maize LOCK. By crossing KEY and LOCK plants, the expressed Cre recombinase under the control of the Zm1rbcS promoter from KEY maize accurately removed the NosT of LOCK maize. Consequently, the expression of blocked Cry1Ab/c was enabled in specific green tissues in their hybrids. The expression level and concentration of Cry1Ab/c were observed using a strategy with high specific accumulation in green tissues (leaf and stem). Still, only a small or absent amount was observed in root and kernel tissues. Furthermore, we assessed the bioactivity of transgenic maize against 2 common lepidopteran pests, Ostrinia furnacalis and Spodoptera frugiperda, in the laboratory and field. The transgenic plants showed high plant resistance levels against the 2 pests, with mortality rates above 97.2% and damage scales below 2.2 compared with the control group. These findings are significant for exploring novel genetic engineering techniques in GM maize and providing a feasible strategy for transgenes avoiding expression in edible parts. In addition, implementing the Cre/loxP-mediated system could relieve public sentiment toward the biosafety of GM plants.

6.
Plant Physiol Biochem ; 201: 107874, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37429215

RESUMO

Seed germination directly affect maize yield and grain quality. Low-temperature reduces maize yield by affecting seed germination and seedling growth. However, the molecular mechanism of maize seed germination under low-temperature remains unclear. In this study, the transcriptome data of two maize inbred lines SCL127 (chilling-sensitive) and SCL326 (chilling-tolerant) were analyzed at five time points (0 H, 4 H, 12 H, 24 H, and 48 H) under low-temperature conditions. Through the comparison of SCL127-0 H-vs-SCL326-0 H (Group I), SCL127-4 H-vs-SCL326-4 H (Group Ⅱ), SCL127-12 H-vs-SCL326-12 H (Group Ⅲ), SCL127-24 H-vs-SCL326-24 H (Group Ⅳ), and SCL127-48 H-vs SCL326-48 H (Group Ⅴ), a total of 8,526 differentially expressed genes (DEGs) were obtained. Weighted correlation network analysis revealed that Zm00001d010445 was the hub gene involved in seed germination under low-temperature conditions. Zm00001d010445-based association analysis showed that Hap Ⅱ (G) was the excellent haplotype for seed germination under low-temperature conditions. These findings provide a new perspective for the study of the genetic architecture of maize tolerance to low-temperature and contribute to the cultivation of maize varieties with low-temperature tolerance.


Assuntos
Germinação , Zea mays , Germinação/genética , Zea mays/genética , Temperatura , Sementes/genética , Plântula
7.
Theor Appl Genet ; 136(5): 122, 2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37142873

RESUMO

KEY MESSAGE: A metal transporter ZmNRAMP6 was identified by using a trait-associated co-expression network analysis at a genome-wide level. ZmNRAMP6 confers maize sensitivity to Pb by accumulating it to maize shoots. ZmNRAMP6 knockout detains Pb in roots, activates antioxidant enzymes, and improves Pb tolerance. Lead (Pb) is one of the most toxic heavy metal pollutants, which can penetrate plant cells via root absorption and thus cause irreversible damages to the human body through the food chain. To identify the key gene responsible for Pb tolerance in maize, we performed a trait-associated co-expression network analysis at a genome-wide level, using two maize lines with contrasting Pb tolerances. Finally, ZmNRAMP6 that encodes a metal transporter was identified as the key gene among the Pb tolerance-associated co-expression module. Heterologous expression of ZmNRAMP6 in yeast verified its role in Pb transport. Combined Arabidopsis overexpression and maize mutant analysis suggested that ZmNRAMP6 conferred plant sensitivity to Pb stress by mediating Pb distribution across the roots and shoots. Knockout of ZmNRAMP6 caused Pb retention in the roots and activation of the antioxidant enzyme system, resulting in an increased Pb tolerance in maize. ZmNRAMP6 was likely to transport Pb from the roots to shoots and environment. An integration of yeast one-hybrid and dual-luciferase reporter assay uncovered that ZmNRAMP6 was negatively regulated by a known Pb tolerance-related transcript factor ZmbZIP54. Collectively, knockout of ZmNRAMP6 will aid in the bioremediation of contaminated soil and food safety guarantee of forage and grain corn.


Assuntos
Raízes de Plantas , Poluentes do Solo , Humanos , Raízes de Plantas/metabolismo , Zea mays/fisiologia , Antioxidantes/metabolismo , Chumbo/toxicidade , Chumbo/metabolismo , Saccharomyces cerevisiae , Poluentes do Solo/metabolismo
8.
Theor Appl Genet ; 136(4): 93, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37010631

RESUMO

KEY MESSAGE: Combined GWAS, WGCNA, and gene-based association studies identified the co-expression network and hub genes for maize EC induction. ZmARF23 bound to ZmSAUR15 promoter and regulated its expression, affecting EC induction. Embryonic callus (EC) induction in immature maize embryos shows high genotype dependence, which limits the application of genetic transformation in transgenic breeding and gene function elucidation in maize. Herein, we conducted a genome-wide association mapping (GWAS) for four EC induction-related traits, namely rate of embryonic callus induction (REC), increased callus diameter (ICD), ratio of shoot formation (RSF), and length of shoot (LS) across different environments. A total of 77 SNPs were significantly associated these traits under three environments and using the averages (across environments). Among these significant SNPs, five were simultaneously detected under multiple environments and 11 had respective phenotypic variation explained > 10%. A total of 257 genes were located in the linkage disequilibrium decay of these REC- and ICD-associated SNPs, of which 178 were responsive to EC induction. According to the expression values of the 178 genes, we performed a weighted gene co-expression network analysis (WGCNA) and revealed an EC induction-associated module and five hub genes. Hub gene-based association studies uncovered that the intragenic variations in GRMZM2G105473 and ZmARF23 influenced EC induction efficiency among different maize lines. Dual-luciferase reporter assay indicated that ZmARF23 bound to the promoter of a known causal gene (ZmSAUR15) for EC induction and positively regulated its expression on the transcription level. Our study will deepen the understanding of genetic and molecular mechanisms underlying EC induction and contribute to the use of genetic transformation in maize.


Assuntos
Estudo de Associação Genômica Ampla , Zea mays , Zea mays/genética , Zea mays/metabolismo , Melhoramento Vegetal , Mapeamento Cromossômico , Fenótipo , Polimorfismo de Nucleotídeo Único
9.
Phytopathology ; 113(7): 1317-1324, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36721376

RESUMO

Gibberella ear rot (GER) in maize caused by Fusarium graminearum is one of the most devastating maize diseases reducing grain yield and quality worldwide. The genetic bases of maize GER resistance remain largely unknown. Using artificial inoculation across multiple environments, the GER severity of an association panel consisting of 316 diverse inbred lines was observed with wide phenotypic variation. In the association panel, a genome-wide association study using a general linear model identified 69 single-nucleotide polymorphisms (SNPs) significantly associated with GER resistance at the threshold of 2.04 × 10-5, and the average phenotypic variation explained (PVE) of these SNPs was 5.09%. We also conducted a genome-wide association study analysis using a mixed linear model at a threshold of 1.0 × 10-4, and 16 significantly associated SNPs with an average PVE of 4.73% were detected. A combined general linear model and mixed linear model method obtained 10 co-localized significantly associated SNPs linked to GER resistance, including the most significant SNP (PZE-105079915) with the greatest PVE value, 9.07%, at bin 5.05 following 10 candidate genes. These findings are significant for the exploration of the complicated genetic variations in maize GER resistance. The regions and genes identified herein provide a list of candidate targets for further investigation, in addition to the elite germplasm resources that can be used for breeding GER resistance in maize.


Assuntos
Fusarium , Gibberella , Gibberella/genética , Estudo de Associação Genômica Ampla , Doenças das Plantas/genética , Melhoramento Vegetal , Fusarium/genética , Loci Gênicos , Polimorfismo de Nucleotídeo Único/genética , Zea mays/genética , Resistência à Doença/genética
10.
Plant Physiol Biochem ; 195: 300-309, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36657295

RESUMO

Lead (Pb) in the soil affects the growth and development of plants and causes damages to the human body through the food chain. Here, we identified and cloned a Pb-tolerance gene ZmPIP2;5 based on a weighted gene co-expression network analysis and gene-based association studies. We showed that ZmPIP2;5 encodes a plasma membrane aquaporin and positively regulated Pb tolerance and accumulation in Arabidopsis and yeast. Overexpression of ZmPIP2;5 increased root length and fresh weight of Arabidopsis seedlings under Pb stress. Heterologous expression of ZmPIP2;5 in yeast caused the enhanced growth speed under Pb treatment and Pb accumulation in yeast cells. A (T/A) SNP in the ZmPIP2;5 promoter affected the expression abundance of ZmPIP2;5 and thereby led to the difference in Pb tolerance among different maize lines. Our study helps to understand the mechanism underlying plant tolerance to Pb stress and provides new ideas for breeding Pb-tolerance maize varieties via molecular marker-assisted selection.


Assuntos
Arabidopsis , Zea mays , Humanos , Zea mays/metabolismo , Chumbo/toxicidade , Chumbo/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Saccharomyces cerevisiae/metabolismo , Melhoramento Vegetal , Regulação da Expressão Gênica de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo
11.
Plant Dis ; 107(4): 1115-1121, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36131495

RESUMO

Gibberella ear rot (GER) caused by Fusarium graminearum (teleomorph Gibberella zeae) is one of the most devastating maize diseases that reduces grain yield and quality worldwide. Utilization of host genetic resistance has become one of the most suitable strategies to control GER. In this study, a set of 246 diverse inbred lines derived from the intermated B 73 × Mo 17 doubled haploid population (IBM Syn10 DH) were used to detect quantitative trait loci (QTL) associated with resistance to GER. Meanwhile, a GradedPool-Seq (GPS) approach was performed to identify genomic variations involved in GER resistance. Using artificial inoculation across multiple environments, GER severity of the population was observed with wide phenotypic variation. Based on the linkage mapping, a total of 14 resistant QTLs were detected, accounting for 5.11 to 14.87% of the phenotypic variation, respectively. In GPS analysis, five significant single nucleotide polymorphisms (SNPs) associated with GER resistance were identified. Combining QTL mapping and GPS analysis, a peak-value SNP on chromosome 4 from GPS was overlapped with the QTL qGER4.2, suggesting that the colocalized region could be the most possible target location conferring resistance to GER. Subsequently, seven candidate genes were identified within the peak SNP, linking them to GER resistance. These findings are useful for exploring the complicated genetic variations in maize GER resistance. The genomic regions and genes identified herein provide a list of candidate targets for further investigation, in addition to the combined strategy that can be used for quantitative traits in plant species.


Assuntos
Gibberella , Locos de Características Quantitativas , Locos de Características Quantitativas/genética , Gibberella/genética , Zea mays/genética , Mapeamento Cromossômico
12.
Int J Mol Sci ; 23(23)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36499409

RESUMO

Ear shank length (ESL) has significant effects on grain yield and kernel dehydration rate in maize. Herein, linkage mapping and genome-wide association study were combined to reveal the genetic architecture of maize ESL. Sixteen quantitative trait loci (QTL) were identified in the segregation population, among which five were repeatedly detected across multiple environments. Meanwhile, 23 single nucleotide polymorphisms were associated with the ESL in the association panel, of which four were located in the QTL identified by linkage mapping and were designated as the population-common loci. A total of 42 genes residing in the linkage disequilibrium regions of these common variants and 12 of them were responsive to ear shank elongation. Of the 12 genes, five encode leucine-rich repeat receptor-like protein kinases, proline-rich proteins, and cyclin11, respectively, which were previously shown to regulate cell division, expansion, and elongation. Gene-based association analyses revealed that the variant located in Cyclin11 promoter affected the ESL among different lines. Cyclin11 showed the highest expression in the ear shank 15 days after silking among diverse tissues of maize, suggesting its role in modulating ESL. Our study contributes to the understanding of the genetic mechanism underlying maize ESL and genetic modification of maize dehydration rate and kernel yield.


Assuntos
Estudo de Associação Genômica Ampla , Zea mays , Zea mays/genética , Fenótipo , Mapeamento Cromossômico , Locos de Características Quantitativas , Polimorfismo de Nucleotídeo Único , Ligação Genética
13.
Front Public Health ; 10: 955393, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36388295

RESUMO

Background: Given the aging population, the quality of mental health of elderly people deserves special attention. The aims of this study were (1) to assess the difference of neuro-emotion based on EEG from the cognitively impaired elderly (CNE) and the cognitively normal elderly (CIE) participants viewing different color Ardisia mamillata Hance and (2) to determine which color Ardisia mamillata Hance has greater benefits for boosting their neuro-emotions. Methods: The cognitive function of the participants was judged by using the revised Chinese version of the Mini-Mental State Examination (MMSE) scale combined with the daily cognitive performance of the participants, and the participants were divided into the cognitive normal elderly (CNE) and the cognitive impairment elderly (CIE). A total of 10 CNE volunteers and 10 CIE volunteers were recruited as participants for this study. For this study, two varieties of Ardisia mamillata Hance, green tiger tongue (GTT) with green leaves and red tiger tongue (RTT) with reddish brown leaves, were observed as plant materials. In total, six emotional indexes, including stress, engagement, interest, excitement, focus, and relaxation, were then measured by electroencephalography (EEG). Results: RTT had the most positive effect on EEG neuro-emotion in the CNE group, with significant reductions in stress, engagement, and focus in the RTT test, while the combination of GTT+RTT had a positive effect on EEG neuro-emotions in the CIE group, with significant reductions in engagement and focus in the GTT+RTT test. No statistically significant differences were found for the interest, excitement, and relaxation index in the CNE and CIE participants in all tests. Conclusion: Significant reductions were observed in stress, engagement, and focus values of the CIE participants in the RTT test, which indicated that the CNE participants were more relaxed. RTT is a reddish brown and warm color plant, so the CNE individuals should always have the warm color plants indoors or outdoors, which could help boost their neuro-emotions. Significant reductions were observed in engagement and focus values of the CIE participants in the GTT+RTT test, which indicated that the CIE participants were more relaxed. The combination of GTT+RTT test shows the combination cold and warm color plants; therefore, the CIE individuals should always have a combination of cool and warm color plants indoors or outdoors, which could help boost their EEG neuro-emotions.


Assuntos
Ardisia , Disfunção Cognitiva , Humanos , Idoso , Disfunção Cognitiva/diagnóstico , Disfunção Cognitiva/epidemiologia , Disfunção Cognitiva/psicologia , Emoções , Eletroencefalografia , Cognição
14.
Front Plant Sci ; 13: 1015151, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36226300

RESUMO

Lead (Pb) is a highly toxic contaminant to living organisms and the environment. Excessive Pb in soils affects crop yield and quality, thus threatening human health via the food chain. Herein, we investigated Pb tolerance among a maize association panel using root bushiness (BSH) under Pb treatment as an indicator. Through a genome-wide association study of relative BSH, we identified four single nucleotide polymorphisms (SNPs) and 30 candidate genes associated with Pb tolerance in maize seedlings. Transcriptome analysis showed that four of the 30 genes were differentially responsive to Pb treatment between two maize lines with contrasting Pb tolerance. Among these, the ZmbZIP107 transcription factor was confirmed as the key gene controlling maize tolerance to Pb by using gene-based association studies. Two 5' UTR_variants in ZmbZIP107 affected its expression level and Pb tolerance among different maize lines. ZmbZIP107 protein was specifically targeted to the nucleus and ZmbZIP107 mRNA showed the highest expression in maize seedling roots among different tissues. Heterologous expression of ZmbZIP107 enhanced rice tolerance to Pb stress and decreased Pb absorption in the roots. Our study provided the basis for revelation of the molecular mechanism underlying Pb tolerance and contributed to cultivation of Pb-tolerant varieties in maize.

15.
Int J Mol Sci ; 23(17)2022 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-36077153

RESUMO

Salinization seriously threatens the normal growth of maize, especially at the seedling stage. Recent studies have demonstrated that circular RNAs (circRNAs) play vital roles in the regulation of plant stress resistance. Here, we performed a genome-wide association study (GWAS) on the survival rate of 300 maize accessions under a salt stress treatment. A total of 5 trait-associated SNPs and 86 candidate genes were obtained by the GWAS. We performed RNA sequencing for 28 transcriptome libraries derived from 2 maize lines with contrasting salt tolerance under normal and salt treatment conditions. A total of 1217 highly expressed circRNAs were identified, of which 371 were responsive to a salt treatment. Using PCR and Sanger sequencing, we verified the reliability of these differentially expressed circRNAs. An integration of the GWAS and RNA-Seq analyses uncovered two differentially expressed hub genes (Zm00001eb013650 and Zm00001eb198930), which were regulated by four circRNAs. Based on these results, we constructed a regulation model of circRNA/miRNA/mRNA that mediated salt stress tolerance in maize. By conducting hub gene-based association analyses, we detected a favorable haplotype in Zm00001eb198930, which was responsible for high salt tolerance. These results help to clarify the regulatory relationship between circRNAs and their target genes as well as to develop salt-tolerant lines for maize breeding.


Assuntos
RNA Circular , Zea mays , Perfilação da Expressão Gênica , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , RNA Circular/genética , Reprodutibilidade dos Testes , Tolerância ao Sal/genética , Transcriptoma , Zea mays/genética
16.
Int J Mol Sci ; 23(15)2022 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-35955919

RESUMO

The ability of immature embryos to induce embryogenic callus (EC) is crucial for genetic transformation in maize, which is highly genotype-dependent. To dissect the genetic basis of maize EC induction, we conducted QTL mapping for four EC induction-related traits, the rate of embryogenic callus induction (REC), rate of shoot formation (RSF), length of shoot (LS), and diameter of callus (DC) under three environments by using an IBM Syn10 DH population derived from a cross of B73 and Mo17. These EC induction traits showed high broad-sense heritability (>80%), and significantly negative correlations were observed between REC and each of the other traits across multiple environments. A total of 41 QTLs for EC induction were identified, among which 13, 12, 10, and 6 QTLs were responsible for DC, RSF, LS, and REC, respectively. Among them, three major QTLs accounted for >10% of the phenotypic variation, including qLS1-1 (11.54%), qLS1-3 (10.68%), and qREC4-1 (11.45%). Based on the expression data of the 215 candidate genes located in these QTL intervals, we performed a weighted gene co-expression network analysis (WGCNA). A combined use of KEGG pathway enrichment and eigengene-based connectivity (KME) values identified the EC induction-associated module and four hub genes (Zm00001d028477, Zm00001d047896, Zm00001d034388, and Zm00001d022542). Gene-based association analyses validated that the variations in Zm00001d028477 and Zm00001d034388, which were involved in tryptophan biosynthesis and metabolism, respectively, significantly affected EC induction ability among different inbred lines. Our study brings novel insights into the genetic and molecular mechanisms of EC induction and helps to promote marker-assisted selection of high-REC varieties in maize.


Assuntos
Locos de Características Quantitativas , Zea mays , Mapeamento Cromossômico , Genes de Plantas , Fenótipo , Zea mays/genética , Zea mays/metabolismo
17.
Artigo em Inglês | MEDLINE | ID: mdl-36011655

RESUMO

BACKGROUND: The purpose of this study is to explore the difference between the indexes of neuro-emotion between the cognitively normal elderly (CNE) and cognitively impaired elderly (CIE) while viewing the Ardisia mamillata Hance with red fruit (F) and without red fruit (NF) to determine which kind of the Ardisia mamillata Hance would be more beneficial to the participants' neuro-emotions. METHODS: Nine CNE individuals and nine CIE individuals, ranging in age from 80-90 years old, participated in this study and signed the informed consent form before beginning the experiment. Six mood indicators (engagement, excitement, focus, interest, relaxation, and stress) were measured by an EEG headset during the participants' viewing of the NF, F, and NF + F. RESULTS: For the CNE group, their engagement, excitement, and focus values were the lowest, while their interest value was the highest when they view the NF + F; therefore, we obtain the results that the combination of NF + F was the most beneficial to their EEG emotions. For the CIE group, the combination of NF + F increased their interest score, but decreased their focus score, which indicated that the NF + F was the most beneficial to their neuro-emotions. CONCLUSIONS: This study concluded that the combination of plants with and without fruits was most beneficial to the neural emotions of both groups of elderly people. Especially for the CIE, plants with larger and warmer colors, such as yellow, red, and orange fruits, should be considered for installation indoors or outdoors, as this would be better for their emotional well-being.


Assuntos
Ardisia , Idoso , Idoso de 80 Anos ou mais , Eletroencefalografia , Emoções , Frutas , Humanos
18.
Physiol Plant ; 174(1): e13606, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34837237

RESUMO

Soil salinization is an important factor threatening the yield and quality of maize. Ca2+ plays a considerable role in regulating plant growth under salt stress. Herein, we examined the shoot Ca2+ concentrations, root Ca2+ concentrations, and transport coefficients of seedlings in an association panel composed of 305 maize inbred lines under normal and salt conditions. A genome-wide association study was conducted by using the investigated phenotypes and 46,408 single-nucleotide polymorphisms of the panel. As a result, 53 significant SNPs were specifically detected under salt treatment, and 544 genes were identified in the linkage disequilibrium regions of these SNPs. According to the expression data of the 544 genes, we carried out a weighted coexpression network analysis. Combining the enrichment analyses and functional annotations, four hub genes (GRMZM2G051032, GRMZM2G004314, GRMZM2G421669, and GRMZM2G123314) were finally determined, which were then used to evaluate the genetic variation effects by gene-based association analysis. Only GRMZM2G123314, which encodes a pentatricopeptide repeat protein, was significantly associated with Ca2+ transport and the haplotype G-CT was identified as the superior haplotype. Our study brings novel insights into the genetic and molecular mechanisms of salt stress response and contributes to the development of salt-tolerant varieties in maize.


Assuntos
Estudo de Associação Genômica Ampla , Zea mays , Cálcio , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Estresse Salino , Plântula/genética , Zea mays/fisiologia
19.
Theor Appl Genet ; 134(10): 3305-3318, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34218289

RESUMO

KEYMESSAGE: Two hub genes GRMZM2G075104 and GRMZM2G333183 involved in salt tolerance were identified by GWAS and WGCNA. Furthermore, they were verified to affect salt tolerance by candidate gene association analysis. Salt stress influences maize growth and development. To decode the genetic basis and hub genes controlling salt tolerance is a meaningful exploration for cultivating salt-tolerant maize varieties. Herein, we used an association panel consisting of 305 lines to identify the genetic loci responsible for Na+- and K+-related traits in maize seedlings. Under the salt stress, seven significant single nucleotide polymorphisms were identified using a genome-wide association study, and 120 genes were obtained by scanning the linkage disequilibrium regions of these loci. According to the transcriptome data of the above 120 genes under salinity treatment, we conducted a weighted gene co-expression network analysis. Combined the gene annotations, two SNaC/SKC (shoot Na+ content/shoot K+ content)-associated genes GRMZM2G075104 and GRMZM2G333183 were finally identified as the hub genes involved in salt tolerance. Subsequently, these two genes were verified to affect salt tolerance of maize seedlings by candidate gene association analysis. Haplotypes TTGTCCG-CT and CTT were determined as favorable/salt-tolerance haplotypes for GRMZM2G075104 and GRMZM2G333183, respectively. These findings provide novel insights into genetic architectures underlying maize salt tolerance and contribute to the cultivation of salt-tolerant varieties in maize.


Assuntos
Cromossomos de Plantas/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Tolerância ao Sal , Plântula/fisiologia , Estresse Fisiológico , Zea mays/fisiologia , Genoma de Planta , Estudo de Associação Genômica Ampla , Desequilíbrio de Ligação , Proteínas de Plantas/genética , Polimorfismo de Nucleotídeo Único , Plântula/genética , Transcriptoma , Zea mays/genética
20.
Plant J ; 108(1): 40-54, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34252236

RESUMO

Maize is an important crop worldwide, as well as a valuable model with vast genetic diversity. Accurate genome and annotation information for a wide range of inbred lines would provide valuable resources for crop improvement and pan-genome characterization. In this study, we generated a high-quality de novo genome assembly (contig N50 of 15.43 Mb) of the Chinese elite inbred line RP125 using Nanopore long-read sequencing and Hi-C scaffolding, which yield highly contiguous, chromosome-length scaffolds. Global comparison of the RP125 genome with those of B73, W22, and Mo17 revealed a large number of structural variations. To create new germplasm for maize research and crop improvement, we carried out an EMS mutagenesis screen on RP125. In total, we obtained 5818 independent M2 families, with 946 mutants showing heritable phenotypes. Taking advantage of the high-quality RP125 genome, we successfully cloned 10 mutants from the EMS library, including the novel kernel mutant qk1 (quekou: "missing a small part" in Chinese), which exhibited partial loss of endosperm and a starch accumulation defect. QK1 encodes a predicted metal tolerance protein, which is specifically required for Fe transport. Increased accumulation of Fe and reactive oxygen species as well as ferroptosis-like cell death were detected in qk1 endosperm. Our study provides the community with a high-quality genome sequence and a large collection of mutant germplasm.


Assuntos
Genoma de Planta/genética , Zea mays/genética , Produtos Agrícolas , Endosperma/genética , Endosperma/metabolismo , Endogamia , Mutação , Fenótipo , Melhoramento Vegetal , Banco de Sementes , Sementes/genética , Sementes/metabolismo , Amido/metabolismo , Zea mays/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA